Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems

Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems
Author: K. Suganthi
Publsiher: CRC Press
Total Pages: 296
Release: 2021-09-14
Genre: Technology & Engineering
ISBN 13: 1000441814

Download Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems Book in PDF, Epub and Kindle

This book offers the latest advances and results in the fields of Machine Learning and Deep Learning for Wireless Communication and provides positive and critical discussions on the challenges and prospects. It provides a broad spectrum in understanding the improvements in Machine Learning and Deep Learning that are motivating by the specific constraints posed by wireless networking systems. The book offers an extensive overview on intelligent Wireless Communication systems and its underlying technologies, research challenges, solutions, and case studies. It provides information on intelligent wireless communication systems and its models, algorithms and applications. The book is written as a reference that offers the latest technologies and research results to various industry problems..

Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks

Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks
Author: Krishna Kant Singh
Publsiher: John Wiley & Sons
Total Pages: 272
Release: 2020-07-08
Genre: Computers
ISBN 13: 1119640369

Download Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks Book in PDF, Epub and Kindle

Communication and network technology has witnessed recent rapid development and numerous information services and applications have been developed globally. These technologies have high impact on society and the way people are leading their lives. The advancement in technology has undoubtedly improved the quality of service and user experience yet a lot needs to be still done. Some areas that still need improvement include seamless wide-area coverage, high-capacity hot-spots, low-power massive-connections, low-latency and high-reliability and so on. Thus, it is highly desirable to develop smart technologies for communication to improve the overall services and management of wireless communication. Machine learning and cognitive computing have converged to give some groundbreaking solutions for smart machines. With these two technologies coming together, the machines can acquire the ability to reason similar to the human brain. The research area of machine learning and cognitive computing cover many fields like psychology, biology, signal processing, physics, information theory, mathematics, and statistics that can be used effectively for topology management. Therefore, the utilization of machine learning techniques like data analytics and cognitive power will lead to better performance of communication and wireless systems..

Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication

Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication
Author: E. S. Gopi
Publsiher: Springer Nature
Total Pages: 643
Release: 2021-05-28
Genre: Technology & Engineering
ISBN 13: 9811602891

Download Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication Book in PDF, Epub and Kindle

This book is a collection of best selected research papers presented at the Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (MDCWC 2020) held during October 22nd to 24th 2020, at the Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, India. The presented papers are grouped under the following topics (a) Machine Learning, Deep learning and Computational intelligence algorithms (b)Wireless communication systems and (c) Mobile data applications and are included in the book. The topics include the latest research and results in the areas of network prediction, traffic classification, call detail record mining, mobile health care, mobile pattern recognition, natural language processing, automatic speech processing, mobility analysis, indoor localization, wireless sensor networks (WSN), energy minimization, routing, scheduling, resource allocation, multiple access, power control, malware detection, cyber security, flooding attacks detection, mobile apps sniffing, MIMO detection, signal detection in MIMO-OFDM, modulation recognition, channel estimation, MIMO nonlinear equalization, super-resolution channel and direction-of-arrival estimation. The book is a rich reference material for academia and industry..

Machine Learning for Future Wireless Communications

Machine Learning for Future Wireless Communications
Author: Fa-Long Luo
Publsiher: John Wiley & Sons
Total Pages: 490
Release: 2020-02-10
Genre: Technology & Engineering
ISBN 13: 1119562252

Download Machine Learning for Future Wireless Communications Book in PDF, Epub and Kindle

A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field..

Artificial Intelligence for 6G

Artificial Intelligence for 6G
Author: Haesik Kim
Publsiher: Springer Nature
Total Pages: 525
Release: 2022-04-30
Genre: Technology & Engineering
ISBN 13: 3030950417

Download Artificial Intelligence for 6G Book in PDF, Epub and Kindle

This textbook introduces Artificial Intelligence (AI) techniques for wireless communications and networks, helping readers to find solutions for communications and network problems using AI. Artificial Intelligence for 6G introduces, in a step-by-step manner, AI techniques such as: unsupervised learning; supervised learning; reinforcement learning; and deep learning. It explains how these techniques can be used for wireless communications and network systems, particularly in designing and optimizing 6G networks. This book is at the forefront of 6G research, and will be of interest internationally, to graduate students, academics, engineers, and developers who are focused on future development of network systems and mobile communications..

Next-Generation Wireless Networks Meet Advanced Machine Learning Applications

Next-Generation Wireless Networks Meet Advanced Machine Learning Applications
Author: Com?a, Ioan-Sorin
Publsiher: IGI Global
Total Pages: 356
Release: 2019-01-25
Genre: Technology & Engineering
ISBN 13: 152257459X

Download Next-Generation Wireless Networks Meet Advanced Machine Learning Applications Book in PDF, Epub and Kindle

The ever-evolving wireless technology industry is demanding new technologies and standards to ensure a higher quality of experience for global end-users. This developing challenge has enabled researchers to identify the present trend of machine learning as a possible solution, but will it meet business velocity demand? Next-Generation Wireless Networks Meet Advanced Machine Learning Applications is a pivotal reference source that provides emerging trends and insights into various technologies of next-generation wireless networks to enable the dynamic optimization of system configuration and applications within the fields of wireless networks, broadband networks, and wireless communication. Featuring coverage on a broad range of topics such as machine learning, hybrid network environments, wireless communications, and the internet of things; this publication is ideally designed for industry experts, researchers, students, academicians, and practitioners seeking current research on various technologies of next-generation wireless networks..

Knowledge Management and Digital Transformation Power

Knowledge Management and Digital Transformation Power
Author: Orhan TORKUL
Publsiher: Efe Akademi Yayınları
Total Pages: 268
Release: 2022-11-25
Genre: Computers
ISBN 13: 6256995171

Download Knowledge Management and Digital Transformation Power Book in PDF, Epub and Kindle

İÇİNDEKİLER ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNIQUES IN DISTANCE EDUCATION (2012-2021): A SYSTEMATIC REVIEW MEHMET BARIŞ HORZUM - DENİZ DEMİRCİOĞLU DİREN THE ROLE OF CUSTOMER KNOWLEDGE IN DIGITAL TRANSFORMATION: CUSTOMER KNOWLEDGE MANAGEMENT AS A COMPETITIVE ADVANTAGE THROUGH SOCIAL MEDIA PLATFORMS LEVENT ÇALLI MACHINE LEARNING AS A TOOL FOR ACHIEVING DIGITAL TRANSFORMATION MERVE ŞİŞCİ - YUNUS EMRE TORKUL - İHSAN HAKAN SELVİ BLOCKCHAIN-BASED ENERGY MANAGEMENT FOR SUPPLY CHAIN MANAGEMENT ERAY AÇIKGÖZ - BERRİN DENİZHAN A STUDY ON DEEP LEARNING BASED APPLICATIONS USED IN AGRICULTURE IN TURKIYE GÜNAY TEMÜR BLOCKCHAIN AND INFORMATION SHARING FATİH ÇALLI INDUSTRY 4.0, SMART FACTORIES AND EFFECTS ON BUSINESS TİJEN ÖVER ÖZÇELİK - İHSAN HAKAN SELVİ - AYTEN YILMAZ YALÇINER - MUHAMMED TAHA ZEREN ANALYSIS OF THE PARAMETERS THAT AFFECT THE MOISTURE CONTENT OF THE PUMPKIN BY DATA MINING FEYZA GÜRBÜZ OPPORTUNITIES AND CHALLENGES OF DIGITAL TRANSFORMATION IN SMEs-THE ROLE OF DYNAMIC CAPABILITIES AS A CATALYST BÜŞRA ALMA ÇALLI A CUSTOMER-CENTRIC ANALYTICS FRAMEWORK AND INSIGHTS OF DIGITAL TRANSFORMATION ÖMER FARUK SEYMEN THE FUTURE OF MONEY AS A FINANCIAL INVESTMENT TOOL: CENTRAL BANK DIGITAL CURRENCY İNCİ MERVE ALTAN.

Machine Learning and Deep Learning Techniques for Medical Science

Machine Learning and Deep Learning Techniques for Medical Science
Author: K. Gayathri Devi
Publsiher: CRC Press
Total Pages: 426
Release: 2022-05-12
Genre: Technology & Engineering
ISBN 13: 1000583368

Download Machine Learning and Deep Learning Techniques for Medical Science Book in PDF, Epub and Kindle

The application of machine learning is growing exponentially into every branch of business and science, including medical science. This book presents the integration of machine learning (ML) and deep learning (DL) algorithms that can be applied in the healthcare sector to reduce the time required by doctors, radiologists, and other medical professionals for analyzing, predicting, and diagnosing the conditions with accurate results. The book offers important key aspects in the development and implementation of ML and DL approaches toward developing prediction tools and models and improving medical diagnosis. The contributors explore the recent trends, innovations, challenges, and solutions, as well as case studies of the applications of ML and DL in intelligent system-based disease diagnosis. The chapters also highlight the basics and the need for applying mathematical aspects with reference to the development of new medical models. Authors also explore ML and DL in relation to artificial intelligence (AI) prediction tools, the discovery of drugs, neuroscience, diagnosis in multiple imaging modalities, and pattern recognition approaches to functional magnetic resonance imaging images. This book is for students and researchers of computer science and engineering, electronics and communication engineering, and information technology; for biomedical engineering researchers, academicians, and educators; and for students and professionals in other areas of the healthcare sector. Presents key aspects in the development and the implementation of ML and DL approaches toward developing prediction tools, models, and improving medical diagnosis Discusses the recent trends, innovations, challenges, solutions, and applications of intelligent system-based disease diagnosis Examines DL theories, models, and tools to enhance health information systems Explores ML and DL in relation to AI prediction tools, discovery of drugs, neuroscience, and diagnosis in multiple imaging modalities Dr. K. Gayathri Devi is a Professor at the Department of Electronics and Communication Engineering, Dr. N.G.P Institute of Technology, Tamil Nadu, India. Dr. Kishore Balasubramanian is an Assistant Professor (Senior Scale) at the Department of EEE at Dr. Mahalingam College of Engineering & Technology, Tamil Nadu, India. Dr. Le Anh Ngoc is a Director of Swinburne Innovation Space and Professor in Swinburne University of Technology (Vietnam)..

Machine Learning for Networking

Machine Learning for Networking
Author: Éric Renault
Publsiher: Springer
Total Pages: 388
Release: 2019-05-10
Genre: Computers
ISBN 13: 3030199452

Download Machine Learning for Networking Book in PDF, Epub and Kindle

This book constitutes the thoroughly refereed proceedings of the First International Conference on Machine Learning for Networking, MLN 2018, held in Paris, France, in November 2018. The 22 revised full papers included in the volume were carefully reviewed and selected from 48 submissions. They present new trends in the following topics: Deep and reinforcement learning; Pattern recognition and classification for networks; Machine learning for network slicing optimization, 5G system, user behavior prediction, multimedia, IoT, security and protection; Optimization and new innovative machine learning methods; Performance analysis of machine learning algorithms; Experimental evaluations of machine learning; Data mining in heterogeneous networks; Distributed and decentralized machine learning algorithms; Intelligent cloud-support communications, resource allocation, energy-aware/green communications, software defined networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, underwater sensor networks..

Deep Reinforcement Learning for Wireless Networks

Deep Reinforcement Learning for Wireless Networks
Author: F. Richard Yu
Publsiher: Springer
Total Pages: 71
Release: 2019-01-17
Genre: Technology & Engineering
ISBN 13: 3030105466

Download Deep Reinforcement Learning for Wireless Networks Book in PDF, Epub and Kindle

This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results.. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool..

Wireless Communication with Artificial Intelligence

Wireless Communication with Artificial Intelligence
Author: Anuj Singal
Publsiher: CRC Press
Total Pages: 343
Release: 2022-09-16
Genre: Technology & Engineering
ISBN 13: 1000645347

Download Wireless Communication with Artificial Intelligence Book in PDF, Epub and Kindle

This reference text discusses advances in wireless communication, design challenges, and future research directions to design reliable wireless communication. The text discusses emerging technologies including wireless sensor networks, Internet of Things (IoT), cloud computing, mm-Wave, Massive MIMO, cognitive radios (CR), visible light communication (VLC), wireless optical communication, signal processing, and channel modeling. The text covers artificial intelligence-based applications in wireless communication, machine learning techniques and challenges in wireless sensor networks, and deep learning for channel and bandwidth estimation during optical wireless communication. The text will be useful for senior undergraduate, graduate students, and professionals in the fields of electrical engineering, and electronics and communication engineering..

Machine Learning for Networking

Machine Learning for Networking
Author: Éric Renault
Publsiher: Springer Nature
Total Pages: 375
Release: 2021-03-02
Genre: Computers
ISBN 13: 3030708667

Download Machine Learning for Networking Book in PDF, Epub and Kindle

This book constitutes the thoroughly refereed proceedings of the Second International Conference on Machine Learning for Networking, MLN 2019, held in Paris, France, in December 2019. The 26 revised full papers included in the volume were carefully reviewed and selected from 75 submissions. They present and discuss new trends in deep and reinforcement learning, pattern recognition and classification for networks, machine learning for network slicing optimization, 5G system, user behavior prediction, multimedia, IoT, security and protection, optimization and new innovative machine learning methods, performance analysis of machine learning algorithms, experimental evaluations of machine learning, data mining in heterogeneous networks, distributed and decentralized machine learning algorithms, intelligent cloud-support communications, ressource allocation, energy-aware communications, software de ned networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, underwater sensor networks..

Deep Learning Strategies for Security Enhancement in Wireless Sensor Networks

Deep Learning Strategies for Security Enhancement in Wireless Sensor Networks
Author: Sagayam, K. Martin
Publsiher: IGI Global
Total Pages: 405
Release: 2020-06-12
Genre: Computers
ISBN 13: 1799850692

Download Deep Learning Strategies for Security Enhancement in Wireless Sensor Networks Book in PDF, Epub and Kindle

Wireless sensor networks have gained significant attention industrially and academically due to their wide range of uses in various fields. Because of their vast amount of applications, wireless sensor networks are vulnerable to a variety of security attacks. The protection of wireless sensor networks remains a challenge due to their resource-constrained nature, which is why researchers have begun applying several branches of artificial intelligence to advance the security of these networks. Research is needed on the development of security practices in wireless sensor networks by using smart technologies. Deep Learning Strategies for Security Enhancement in Wireless Sensor Networks provides emerging research exploring the theoretical and practical advancements of security protocols in wireless sensor networks using artificial intelligence-based techniques. Featuring coverage on a broad range of topics such as clustering protocols, intrusion detection, and energy harvesting, this book is ideally designed for researchers, developers, IT professionals, educators, policymakers, practitioners, scientists, theorists, engineers, academicians, and students seeking current research on integrating intelligent techniques into sensor networks for more reliable security practices..

Artificial Intelligence and Evolutionary Computations in Engineering Systems

Artificial Intelligence and Evolutionary Computations in Engineering Systems
Author: Subhransu Sekhar Dash
Publsiher: Springer Nature
Total Pages: 799
Release: 2020-02-08
Genre: Technology & Engineering
ISBN 13: 9811501998

Download Artificial Intelligence and Evolutionary Computations in Engineering Systems Book in PDF, Epub and Kindle

This book gathers selected papers presented at the 4th International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems, held at the SRM Institute of Science and Technology, Kattankulathur, Chennai, India, from 11 to 13 April 2019. It covers advances and recent developments in various computational intelligence techniques, with an emphasis on the design of communication systems. In addition, it shares valuable insights into advanced computational methodologies such as neural networks, fuzzy systems, evolutionary algorithms, hybrid intelligent systems, uncertain reasoning techniques, and other machine learning methods and their application to decision-making and problem-solving in mobile and wireless communication networks..

Artificial Intelligent Techniques for Wireless Communication and Networking

Artificial Intelligent Techniques for Wireless Communication and Networking
Author: R. Kanthavel
Publsiher: John Wiley & Sons
Total Pages: 388
Release: 2022-03-22
Genre: Computers
ISBN 13: 1119821274

Download Artificial Intelligent Techniques for Wireless Communication and Networking Book in PDF, Epub and Kindle

ARTIFICIAL INTELLIGENT TECHNIQUES FOR WIRELESS COMMUNICATION AND NETWORKING The 20 chapters address AI principles and techniques used in wireless communication and networking and outline their benefit, function, and future role in the field. Wireless communication and networking based on AI concepts and techniques are explored in this book, specifically focusing on the current research in the field by highlighting empirical results along with theoretical concepts. The possibility of applying AI mechanisms towards security aspects in the communication domain is elaborated; also explored is the application side of integrated technologies that enhance AI-based innovations, insights, intelligent predictions, cost optimization, inventory management, identification processes, classification mechanisms, cooperative spectrum sensing techniques, ad-hoc network architecture, and protocol and simulation-based environments. Audience Researchers, industry IT engineers, and graduate students working on and implementing AI-based wireless sensor networks, 5G, IoT, deep learning, reinforcement learning, and robotics in WSN, and related technologies..

Enabling Technologies for Next Generation Wireless Communications

Enabling Technologies for Next Generation Wireless Communications
Author: Mohammed Usman
Publsiher: CRC Press
Total Pages: 281
Release: 2020-12-29
Genre: Technology & Engineering
ISBN 13: 1000328945

Download Enabling Technologies for Next Generation Wireless Communications Book in PDF, Epub and Kindle

Enabling Technologies for Next Generation Wireless Communications provides up-to-date information on emerging trends in wireless systems, their enabling technologies and their evolving application paradigms. This book includes the latest trends and developments toward next generation wireless communications. It highlights the requirements of next generation wireless systems, limitations of existing technologies in delivering those requirements and the need to develop radical new technologies. It focuses on bringing together information on various technological developments that are enablers vital to fulfilling the requirements of future wireless communication systems and their applications. Topics discussed include spectrum issues, network planning, signal processing, transmitter, receiver, antenna technologies, channel coding, security and application of machine learning and deep learning for wireless communication systems. The book also provides information on enabling business models for future wireless systems. This book is useful as a resource for researchers and practitioners worldwide, including industry practitioners, technologists, policy decision-makers, academicians, and graduate students..

Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning

Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning
Author: Nur Zincir-Heywood
Publsiher: John Wiley & Sons
Total Pages: 400
Release: 2021-09-03
Genre: Technology & Engineering
ISBN 13: 1119675510

Download Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning Book in PDF, Epub and Kindle

COMMUNICATION NETWORKS AND SERVICE MANAGEMENT IN THE ERA OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING Discover the impact that new technologies are having on communication systems with this up-to-date and one-stop resource Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning delivers a comprehensive overview of the impact of artificial intelligence (AI) and machine learning (ML) on service and network management. Beginning with a fulsome description of ML and AI, the book moves on to discuss management models, architectures, and frameworks. The authors also explore how AI and ML can be used in service management functions like the generation of workload profiles, service provisioning, and more. The book includes a handpicked selection of applications and case studies, as well as a treatment of emerging technologies the authors predict could have a significant impact on network and service management in the future. Statistical analysis and data mining are also discussed, particularly with respect to how they allow for an improvement of the management and security of IT systems and networks. Readers will also enjoy topics like: A thorough introduction to network and service management, machine learning, and artificial intelligence An exploration of artificial intelligence and machine learning for management models, including autonomic management, policy-based management, intent based management, and network virtualization-based management Discussions of AI and ML for architectures and frameworks, including cloud systems, software defined networks, 5G and 6G networks, and Edge/Fog networks An examination of AI and ML for service management, including the automatic generation of workload profiles using unsupervised learning Perfect for information and communications technology educators, Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning will also earn a place in the libraries of engineers and professionals who seek a structured reference on how the emergence of artificial intelligence and machine learning techniques is affecting service and network management..